POLYCYCLIC GROUPS : LOCAL AND GLOBAL ORBITS OF ALGEBRAIC GROUPS

MARQUES SOPHIE

In the following, we consider a Q-group \mathcal{G} such that the polynomial equations defining \mathcal{G} as a subset of $GL_n(\mathbb{C})$ all have integer coefficient and a Q-rational representation $\rho : \mathcal{G} \to GL_m(\mathbb{C})$ such that the rational expressions which define this map are polynomials with integer coefficients.

For a positive integer r, $\mathcal{G}(\mathbb{Z}/r\mathbb{Z})$ will denote the set of all matrices in $GL_n(\mathbb{Z}/r\mathbb{Z})$ whose entries satisfy this equations over $\mathbb{Z}/r\mathbb{Z}$ and $\bar{\rho}: \mathcal{G}(\mathbb{Z}/r\mathbb{Z}) \to M_m(\mathbb{Z}/r\mathbb{Z})$ the reduction of $\rho \mod r$.

1. Local orbit of \mathcal{G} in \mathbb{Q}^m

1.1. First main theorem. The Q-rational representation ρ define an action of \mathcal{G} on the vector space \mathbb{C}^m , in particular, an action of $\mathcal{G}(\mathbb{Z})$ on \mathbb{Q}^m .

Definition (Proposition) 1.1. Let a and b in \mathbb{Q}^m . We say that a, b are in the same local orbit of \mathcal{G} if one of this two equivalent conditions are satisfied :

- (1) for all r positive integer, there exists a matrix $g_r \in \mathcal{G}(\mathbb{Z}/r\mathbb{Z})$ such that $\bar{a}\bar{\rho}(g_r) = \bar{b}$ where $\bar{a} = a \mod r$.
- (2) for every prime p, there exists $g_p \in \mathcal{G}(\mathbb{Z}_p)$ such that $a\rho(g_p) = b$.

The goal is first to prove the following main theorem :

Theorem 1.2. Every local orbit of \mathcal{G} in \mathbb{Q}^m is the union of finitely many orbits of $\mathcal{G}(\mathbb{Z})$.

1.2. Sketch of proof of the first main theorem. Let C be the local orbit of $\mathcal{G}(\mathbb{Q})$ in \mathbb{Q}^m , $c \in C$ and denote \mathcal{H} the stabilizer of c in \mathcal{G} .

First, we can establish the following proposition (next section).

Proposition 1.3. Every local \mathcal{G} -orbit in \mathbb{Q}^m is contained in the union of finitely many orbits of $\mathcal{G}(\mathbb{Q})$.

Denote $\mathcal{G}^{\infty} := \prod_{p} \mathcal{G}(\mathbb{Z}_{p})$. In view of this proposition, to prove the main theorem, it remains to show the following lemma :

Lemma 1.4. If for each b and $c \in C$, there exists $g \in \mathcal{G}(\mathbb{Q})$ and $\hat{g} \in \mathcal{G}^{\infty}$ such that $b\rho(g) = c = b\rho(\hat{g}) (\Box)$ then C meets only finitely many orbits of $\mathcal{G}(\mathbb{Z})$.

Proof. Denote $\mathcal{G}(\mathbb{A}_f) := \{\hat{g} = (g_p) \in \prod_p \mathcal{G}(\mathbb{Q}_p) | g_p \in \mathcal{G}(\mathbb{Z}_p), \text{ for almost all prime } p\}$ the adele group of \mathcal{G} and $\mathcal{D} := \mathcal{H}(\mathbb{Q}) \setminus \mathcal{H}(\mathbb{A}_f) / \mathcal{H}^{\infty}$ the double coset.

We can consider the intersection $\mathcal{G}^{\infty} \cap \mathcal{G}(\mathbb{Q})$ in $\mathcal{G}(\mathbb{A}_f)$ and check that $\mathcal{G}^{\infty} \cap \mathcal{G}(\mathbb{Q}) = \mathcal{G}(\mathbb{Z})$.

We will define a map : $\psi : C \to \mathcal{D}$. For each $b \in C$, let $g_b \in \mathcal{G}(\mathbb{Q})$ and $\hat{g}_b \in \mathcal{G}^{\infty}$ as in (\Box) and put $\hat{h}_b := g_b^{-1}\hat{g}_b \in \mathcal{G}(\mathbb{A}_f)$, one can prove that $\hat{h}_b \in \mathcal{H}(\mathbb{A}_f)$ and that the map

$$\begin{array}{rcl} \psi: & \mathcal{C} & \to & \mathcal{D} \\ & b & \mapsto & \mathcal{H}(\mathbb{Q}).\hat{h_b}.\mathcal{H}^{\infty} \end{array}$$

is well defined $(\mathcal{H}(\mathbb{Q}).\hat{h}_b.\mathcal{H}^{\infty}$ doesn't depend in the choices of g_b and \hat{g}_b).

Then, in view of this observations, one can prove the following lemma :

Lemma 1.5. The fibers of ψ are exactly the orbits of $\mathcal{G}(\mathbb{Z})$ in \mathcal{C} .

Finally, the main theorem is a direct consequence of this theorem of Borel

Theorem 1.6 (Conséquence du théorème 7.1, Borel and Serre (1964)). For every Q-group \mathcal{H} , the set $\mathcal{H}(\mathbb{Q})\setminus\mathcal{H}(\mathbb{A}_f)/\mathcal{H}^{\infty}$ is finite.

1.3. Sketch of proof of the proposition 1.3. Let C be the local orbit of $\mathcal{G}(\mathbb{Q})$ in \mathbb{Q}^m , $c \in C$ and denote \mathcal{H} the stabilizer of c in \mathcal{G} .

(1) For k a field, \bar{k} a algebraic closure of k, $\Gamma_k := Gal(\bar{k}|k)$, denote $Z^1(k, \mathcal{H}) := Z^1(\Gamma_k, \mathcal{H}(\bar{\mathbb{Q}}))$ the set of the 1-cocycles, denote ~ the usual equivalence relation on $Z^1(k, \mathcal{H})$, $H^1(k, \mathcal{H}) := Z^1(k, \mathcal{H})/\sim$ the first cohomology group. Choose $\overline{\mathbb{Q}_p}$ containing $\overline{\mathbb{Q}}$, pour tout premier p, so that $\mathcal{H}(\overline{\mathbb{Q}}) \leq \mathcal{H}(\overline{\mathbb{Q}_p})$ and consider the restriction map $r_p : \Gamma_{\mathbb{Q}_p} \to \Gamma_{\mathbb{Q}}$. We can check that the map

$$w: H^1(\mathbb{Q}, \mathcal{H}) \to \prod_p H^1(\mathbb{Q}_p, \mathcal{H})$$

which associate to $[\sigma]$ the class of one element σ of $Z^1(\mathbb{Q}, \mathcal{H})$, the product over the prime p of the class $[\sigma_p]$ of $\sigma_p := \sigma \circ r_p$ element of $Z^1(\mathbb{Q}_p, \mathcal{H})$ is well defined. And the important result for our purpose is the following theorem due to Borel and Serre :

Theorem 1.7 (Théorème 7.1, Borel and Serre (1964)). The map w has finite fibers.

(2) We will define a map $\theta : C \to H^1(\mathbb{Q}, \mathcal{H})$. For this, first, one can establish the following proposition which is a consequence of the Hilbert's Nullstellansatz :

Proposition 1.8. If $a, b \in \mathbb{Q}^m$ lie in the same orbit $\mathcal{G}(\mathbb{Q}_p)$, for some prime p, then they lie in the same orbit of $\mathcal{G}(\overline{\mathbb{Q}})$.

As a result, for each $a \in C$, we have an element $g_a \in \mathcal{G}(\mathbb{Q})$ with $a\rho(g_a) = c$. Then, one can prove that the map $\Delta_a : \Gamma_{\mathbb{Q}} \to \mathcal{H}(\overline{\mathbb{Q}})$ which sends a over $g_a^{-\gamma}g_a$ well defined belongs to $Z^1(\mathbb{Q}, \mathcal{H})$ and doesn't depend on the choice of $g_a \in \mathcal{G}(\mathbb{Q})$. So, this define a map $\theta : C \to H^1(\mathbb{Q}, \mathcal{H})$ maping a over $[\Delta_a]$ the class of Δ_a in $H^1(\mathbb{Q}, \mathcal{H})$. Finally, one can prove without too much difficulties the following lemma :

Lemma 1.9. The fibers of θ are exactly the orbits of $\mathcal{G}(\mathbb{Q})$ in \mathcal{C} .

(3) By (1) and (2), the proposition follows. In fact, one can prove that $w(\theta(C)) \subset \prod_p H^1(\mathbb{Q}_p, \mathcal{H})$ is reduced to one element the fibre of this element $\theta(C)$ is finite by (1) and the theorem is proved by (2).

2. Second main theorem

Let \mathfrak{a} a ring of integer.

Theorem 2.1. Every orbit of $\mathcal{G}(\mathfrak{a})$ meets only finitely many orbits of $\mathcal{G}(\mathbb{Z})$ in \mathbb{Z}^m .

Since when we increase the ring \mathfrak{a} , $\mathcal{G}(\mathfrak{a})$ only gets bigger, we can suppose from now that k is normal in \mathbb{Q} . Denote $\Gamma := Gal(k|\mathbb{Q})$, this group acts on $\mathcal{G}(\mathfrak{a})$ and since $\mathfrak{a} \cup \mathbb{Q} = \mathbb{Z}$, the group of the invariant by this action is $\mathcal{G}(\mathbb{Z})$. For $c \in \mathbb{Z}$, let $C := c\rho(\mathcal{G}(\mathfrak{a})) \cup \mathbb{Z}^m$ and \mathcal{H} be the stabilizer of c in \mathcal{G} . Following the proof of the first theorem, one can define a map

$$\begin{array}{rcl} \theta: & C & \to & H^1(\Gamma, \mathcal{H}(\mathfrak{a})) \\ & a & \mapsto & [\Delta_a] \end{array}$$

such that its fibers are exactly the orbits of $\mathcal{G}(\mathbb{Z})$ in \mathcal{C} . The theorem that we want to prove is then the consequence of the following result due to Borel and Serre.

Theorem 2.2. Let \mathcal{H} be a Q-group, k a finite normal extension field of Q with ring of integers \mathfrak{a} and $\Gamma = Gal(k|\mathbb{Q})$ then $H^1(\Gamma, \mathcal{H}(\mathfrak{a}))$ is finite.

Sketch of proof. In order to obtain this theorem, we need the following two lemma proved in Segal's book. The first lemma gives a description of the cohomology group as a semi-direct product :

Lemma 2.3. Let H be a group, Γ a finite group acting on H. Then there is a 1 : 1 corespondence between the set of the conjugacy classes of the complements to H in $H \rtimes \Gamma$ and the set $H^1(\Gamma, H)$.

The second lemma gives a condition sufficient such that the set of the conjugacy class describe in the previous lemma is finite :

Lemma 2.4. Let H be a group, Γ a finite group acting on H. If $H \rtimes \Gamma$ is isomorphic to an arithmetic group then there the set of the conjugacy classes of the complements to H in $H \rtimes \Gamma$ is finite.

Finally, to prove the theorem it remains to prove the $\mathcal{H}(\mathfrak{a}) \rtimes \Gamma$ is isomorphic to an arithmetic group. For this, one can give a description of this group as a semi-direct product of matrix group over \mathbb{Z} denoted by $\mathcal{H}^+ \rtimes \Gamma^*$ using a \mathbb{Z} basis $(u_1, ..., u_d)$ of \mathfrak{a} which permit to construct an embedding of $GL_n(\mathfrak{a})$ (resp. $GL_n(k)$ into $GL_n(\mathbb{Z})$ (resp. $GL_n(\mathbb{Q})$). And then this semi-direct product is a arithmetic group by the following lemma :

Lemma 2.5. Let H be a subgroup of $GL_n(\mathbb{Z})$. H is a arithmetic group (in some \mathbb{Q} -group of degree n) if and only if H has finite index in its own closure in $GL_n(\mathbb{Z})$.

Indeed, since Γ^* is finite, it suffixes to prove that $\mathcal{H}(\mathfrak{a})^*$ is closed in $GL_n(\mathbb{Z})$ which is true since it can be describe as the zero set of polynomials which take value in $GL_n(\mathbb{Q})$.

3. References

Borel and Serre (1964), Théorème de finitude en cohomologie galoisienne. Comment. math. Helv. 39, 111-64.

Segal (1983), D. Polycyclic Groups. Cambridge, England : Cambridge University Press, 1983.

(MARQUES) UNIV. BORDEAUX, IMB, UMR 5251, F-33400 TALENCE, FRANCE ET UNIVERSITÀ DEGLI STUDI DI PA-DOVA, DIPARTIMENTO DI MATEMATICA, VIA TRIESTE 63, 35121, PADOVA, ITALIA DANS LE CADRE DE ALGANT.DOC. *E-mail address*: Sophie.Marques@math.u-bordeaux1.fr (http://www.math.u-bordeaux1.fr/~smarques)